
International Journal of Electrical, Electronics ISSN No. (Online): 2277-2626
and Computer Engineering 4(1): 66-72(2015)

Multi-channel UART Controller with Programmable Modes
Sanjeev. A. Shukla*, Narendra. P. Patil* and Dinesh. S. Bhadane*

*Department of Electronic and Communication Engineering,
Sandip Foundation, MSBTE, Nasik, (MS), India

(Corresponding author: Sanjeev. A. Shukla)
(Received 04 February, 2015 Accepted 07March, 2015)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: In the recent years the development in communication systems requires the data transmission
to be performed faster and faster. To meet this demand the paper presents a high speed multi channel UART
controller based on FIFO (First In First Out) technique. An Asynchronous FIFO is designed with dual port
ram array and with read and right pointers. The structure of controller is designed with UART (Universal
Asynchronous Receiver Transmitter) and FIFO circuit design, the structure of the controller is scalable and
reconfigurable design. This controller reduces the synchronization error between the sub systems in a system
with other sub systems. Mainly the controller is used to operate or implement the communication system
when master equipment and slave equipment are set at different baud rate.

Keywords: FIFO, UART, Programmable Modes.

I. INTRODUCTION

Now-a-days, Micro controllers and digital signal
processors (DSPs), in complex control algorithms can
be easily implemented to attain the desired system
performance. But in proposed control systems, it is
difficult to attain the exact result for various factors
such as which affect the control of the system, it means
control algorithms are capable of controlling and
implementing equipment and states of control
circumstance [1]. Except those factors, communication
parameters of control systems include Bit Error Rate,
Baud Rate and synchronization between sub-systems
also causing great effect. In order to improve precision
of control system and make better use of modern
control algorithms, we should pay much more attention
on communication methods in control systems. In this
paper we propose a Multi-UART controller that will
use a serial communication circuit UART. Universal
Asynchronous Receiver Transmitter (UART) circuits
are popular and widely used in several systems. A
universal asynchronous receive/transmit (UART) is an
integrated circuit which plays the most important role in
serial communication. It handles the conversion
between serial and parallel data. Serial communication
reduces the distortion of a signal, therefore makes data
transfer between two systems separated in great
distance possible [2]. we design a multi-channel UART
controller based on FIFO techniques. It can receive data
with a UART block at a certain Baud Rate and transmit
data to sub-equipment with a UART block at the same
Baud Rate or at other kind of Baud Rate which is

different from the receiving Baud Rate. And it also can
be used to reduce time delay between sub controllers. In
this paper, using FIFO technique, Baud Rate generator
is designed to implement communications within
equipments at different Baud Rates. FIFOs are usually
used for clock domains crossing to safely pass data
from one clock domain to another asynchronous clock
domain. Using a FIFO to pass data from one clock
domain to another clock domain requires multi-
asynchronous clock design techniques. There are
different ways to design a FIFO right. This paper details
one method that is used to design, synthesize and
analyze a safe FIFO between two different clock
domains using Gray code. FIFO is the most important
part of these systems and it works as a bridge between
different devices. So the features and capabilities of the
asynchronous FIFO determine the features of our
controller. FIFO can be used to complete
communication in parallel or serial port.

II. IMPLEMENTATION OF ASYNCHRONOUS
FIFO’S

A. Introduction to asynchronous FIFO
An asynchronous FIFO refers to a FIFO design where
data values are written to a FIFO buffer from one clock
domain and the data value are read from the same FIFO
buffer from another clock domain, which are
asynchronous to each other. Asynchronous FIFOs are
often used to quickly and safely pass data from one
clock domain to another asynchronous clock domain.

I

J E
E

CE

www.researchtrend.net


Shukla, Patil and Bhadane 67

In asynchronous clock circuit, periods and phases of
each clock domain are completely independent so the
probability of data loss is always not zero. This paper
introduces a way of designing FIFO based on FPGAs
with high write/read speed and high reliability.
Generally, a FIFO consists of a RAM Array block, a
Status block, a writer pointer (WR_ptr) and a read point
(RD_ptr) and its structure. A RAM array with separate
read and write ports is used to stored data. The writer
pointer points to the location that will be written next,
and the read pointer points to the location that will be
read currently. A write operation increments the writer
pointer and a read operation increments the read
pointer. On reset, both pointers are reset to zero, the
FIFO is empty. The writer pointer happens to be the
next FIFO location to be written and the reader pointer
is pointing to invalid data. The responsibility of the
status block is to generate the “Empty” and “Full”
signals to the FIFO. If the “Full” is active then the FIFO
cannot accommodate more data and if the “Empty” is
active then the FIFO cannot provide more data to
readout. When writing data into the FIFO “wclk” will
be used as the clock domain and when reading data out
of the FIFO “rclk” will be used as the clock domain.
These both clock domains are asynchronous. In
designing of asynchronous FIFOs, two difficult
problems cannot be ignored. One is how to judge FIFOs
status according to the writer pointer and read pointer.
The other is how to design circuit to synchronize
asynchronous clock domains to avoid Metastability. B.
Status of Empty and Full of FIFO Creating empty and

full signals is the most important part of designing a
FIFO. No matter under what circumstance, the read and
write pointers cannot point to the same address of the
FIFO. So, the empty and full signals play very
important roles within FIFO that they block access to
further read or write respectively. The critical
importance of this blocking lies in the fact that pointer
positions are the only control that is over the FIFO, and
write or read operation changes the pointers. In order to
exactly know whether the FIFO is full or empty, we can
set a direction flag keeps track of what causes the
pointers to become equal to each other. The flag tells
the status circuit the direction in which the FIFO is
currently headed. The implementation of the direction
flag is a little complex because you have to set the
threshold of “going toward full” and “going toward
empty”. The status block fundamentally performs
operations on the two pointers, and these run off two
different clock domains. This is what causes the real
difficulty. If you were to sample the read pointer with
the write pointer (or vice versa), you will potentially
run into a problem called metastability. Meta stability is
the name for the physical phenomenon that happens
when an event tries to sample another event. In a
physical circuit the metastability causes the output
uncertainty either be a logical 1 or a logical 0 or
something between. In physical systems, sampling an
event by another event yields unpredictable results. To
eliminate these kinds of problems caused by
metastability is a difficulty in designing a FIFO

Fig. 1. Internal block diagram of asynchronous FIFO.



Shukla, Patil and Bhadane 68

C. Solutions of Metastability
Metastability can cause unpredictable problems in a
FIFO, so in the designing stage we should do the best to
reduce the metastability. If asynchronous element is in
a system, metastability is unavoidable. There is
absolutely no way to eliminate metastability
completely, so what we do is calculate a “probability”
of error and express this in terms of time ie. MTBF
(Mean Time between Failures). MTBF is a statistical
measure of failure probability, and requires some much
more complex, empirical and experimental data to
arrive at. In a D flip-flop, when the input signal changes
instantaneously from 0 to 1 at time, the value of Q is
uncertain. This is metastability. In the FIFO, it needs to
sample the value of a counter with a clock that is
synchronous to the counter clock. Thus it will meet a
situation where the counter is changing from FFFF to
0000, and every single bit goes metastable. This means
that the counter would potentially read any value
between FFFF to 0000 and the FIFO does not work.
The most important things that must to be done are to
make sure that not all bits of the counter will change

simultaneously. In order to minimize the probability of
occurrence of such errors, we should make sure that
precisely one bit changes every time the counter
increments. So we need a counter that counts in the
Gray codes. Gray code is different form binary code
that is every next value differs from the previous in
only one bit position.
In a FIFO, converts the Gray code to Binary code,
increments it and convert it back to the Gray code and
store it. The Gray code counter assumes that the outputs
of registers bits are the Gray code value. The Gray code
outputs are then passed to the Gray to binary converter
which is passed to a binary adder to generate the next
binary value which is passed to the binary to Gray
converter that generates the next Gray code value stored
in register. The first fact to remember about a Gray
code is that the code distance between any two adjacent
words is just 1(only one bit can change from one Gray
count to the next). The second fact to remember about a
Gray code counter is that most useful Gray code
counters must have power-of-2 counts in the sequence.

III. DESCRIPTION OF A MULTI-CHANNEL
UART CONTROLLER

A. Hardware structure
In the multi-channel controller, there are different

blocks including four UART’s, two asynchronous
FIFOs, one Baud Rate Generator, a register block and
with a controller . Each block has different function in
the controller. The first part is UART circuit block and
its structure. It consists of three parts Receive Circuit,
Transmit Circuit and Control/Status Registers. The
Transmit Circuit consists of a Transmit Buffer and a
Shift Register. Transmit Buffer loads data being
transmitted from local CPU. And Shift Register accepts

data from the Transmit Buffer and send it to the TXD
pin one by one bit. The Receive Circuit consists of a
Receive Shift Register and a Receive Buffer. The
Receive Shift Register receives data from RXD one by
one bit. The Control Register a special function register
is used to control the UART and indicate status of it.
According to each bit’s value the UART will choose
different kind of communication method and the UART
knows what to do to receive or transmit data. . When
writing data into FIFOs and reading data out of FIFOs
we could set different clock domains according to the
MCUs’ Baud Rate. So it can be used to implement
communications between MCUs at different Baud Rate.



Shukla, Patil and Bhadane 69

The controller also has a block of Baud Rate Generator
to engender different Baud Rates to content
requirements for different kind of systems.

This block is constituted by timers (32/16 bits timers),
frequency dividers and a Baud Rate setting register.

Fig. 3. Structure of Multi Channel UART.

A controller can also be used to complete communication between high speed device and low speed device.

Fig. 4. Structure of the controller.

IV. PROGRAMMABLE MODES OF CONTROLLER

Fig. 5. States of controller to operate the modes.

If CS is low the controller will enter the IDLE state.
The individual clocks of UART1, UART2, UART3 and
UART4 are disabled in the IDLE state. If CS is high
then the controller will enter the RUN state.

The Multi- UART controller can operate normally in
the RUN state. The individual clocks of each of the
UART are enabled in the RUN state.



Shukla, Patil and Bhadane 70

Fig. 6. State Diagram of Controller in RUN State.

In the RUN state the controller can operate in three
different modes. The three different modes are—the
normal mode, the hub mode and the bridge mode.
Mode_sel is an input signal which determines the mode
in which the controller is working. If the input to the
Mode_sel[2:1] is “00” then the Normal Mode is
activated and the Normal_mode which is an output
signal is made high. Once the controller is in the normal
mode, the controller sets the Normal Mode register in
the Status Register block. All other mode registers are
reset. In the normal mode UART1 will receive data and
UART3 will transmit that data. Similarly in the normal
mode UART2 will receive data and UART4 will
transmit that data.UART1 and UART2 can
independently receive data at different baud
rates.UART3 and UART4 can independently transmit
data at different baud rates. If the input to the
Mode_sel[2:1] is “01”in binary or then the Hub Mode
is activated and the output Hub_mode is made high
while Normal_mode and Bridge_mode outputs go low.
Once the controller is in the Hub Mode the controller
sets the Hub Mode register in the Status block. The
Normal Mode and Bridge Mode registers are reset. In
the Hub Mode UART1 will receive data while UART2,
UART3 and UART4 transmit that data. If the input to
the Mode_sel[2:1] is “11” in binary then the Bridge
Mode is activated and the output Bridge_mode is made
high while Normal_mode and Hub_mode outputs go
low. In theBridge Mode, the controller sets the Bridge
Mode register in the Status Register block. The two
other mode registers are reset. In the Bridge Mode,
UART1 will receive data which is transmitted by
UART2 at different baud rates. Simultaneously in the
Bridge Mode UART3 will receive data and UART4
will transmit that data at different baud rates.

B. Software structure
You can use software codes in Verilog HDL to design
FPGAs hardware architecture it is easy to create and
adjust to satisfy requirements of applications. Here are
one UART used to communicate with PC or other main
MCU and there are also four other UARTs used to
communication with sub MCUs. Each channel has two
FIFOs, one for receiving data and the other for
transmitting data. Each FIFO’s depth is 64 Bytes. when
FIFO is full you cannot write any more byte into the
FIFO. At this time, the Status Detector will set CS high
to indicate that the FIFO is full and stop writing to the
FIFO. When FIFO is empty you cannot read from it any
more. Then the Status Detector will set Empty high to
indicate the status of FIFO and stop reading from it.
When FIFO is not full or empty it will be written or
read data according the control order. After finishing all
write or read operation it will stop until next access is
coming.

IV. SIMULATION AND VERIFICATION

To verify design of the controller a test bench is written
to make verification in ISE simulator The software
structure involved in the design of the following blocks-
UART block, FIFO blocks, Status Register Block, Baud
Generator block. The controller which interacts with all
of the above was designed and its design was discussed
earlier. Some components like UART and FIFO blocks
are used more than once. A single UART was designed
and verified. Then UART component was instantiated
four times to obtain four independent UARTs. Similarly
once FIFO block was designed and verified, it was
instantiated twice to obtain FIFO1 and FIFO2.Codes in
Verilog HDL were used to design the architecture of
the Multi UART controller.



Shukla, Patil and Bhadane 71

Fig. 7. Baud rate generator output.

Fig. 8. Controller Output.

Fig. 9. Transmitting Sequence.



Shukla, Patil and Bhadane 72

Fig. 10. Receiver Response.
V. CONCLUSIONS

This paper introduces a method to design a synchronous
FIFO and using Asynchronous FIFO technique
implements a multi-channel UART controller based on
SRAM with high speed and high reliability. The
controller is reconfigurable and scalable. The controller
can be used to implement communications in complex
system with different Baud Rates of sub-controllers.
And it also can be used to reduce time delays between
sub-controllers of a complex control system to improve
the synchronization of each sub-controller

REFERENCES

[1]. S. E. Lyshevski, “Control Systems Theory with
Engineering Applications”, Birkhauser Boston, 2001.
[2]. L. K. Hu and Q.CH. Wang, “UART-based Reliable
Communication and performance Analysis”, Computer
Engineering, Vol. 32 No. 10, May 2006, pp15-21.
[3]. F.S. Pan, F. ZHAO, J. Xi and Y. Luo, “Implement
of Parallel Signal Processing Syttem Based on FPGA

and Multi-DSP”, Computer Engineering Vol. 32, No.
23, Dec 2006, pp247-249.
[4]. X. D. Wu and B. Dai, “Design of Interface between
High Speed A/D and DSP Based on FIFO”, Journal of
Beijing Institute of Petrochemical Technology, Vol. 14
No.12, June 2006, pp26-29.
[5]. C. E. Cummings, “Simulation and Synthesis
Techniques for Asynchronous FIFO Design”, SNUG
San Jose 2002.
[6]. C. E. Cummings, “Simulation and Synthesis
Techniques for Asynchronous FIFO Design with
Asynchronous Pointer Comparisons”, SNUG San Jose
2002.
[7]. Vijay A. Nebhrajan, “Asynchronous FIFO
Architectures”, www.eebyte.com
[8]. X., Yang, “Industrial Data Communication and
Control Networks”, Beijing: TUP, 2003.6.
[9]. B. Zeidman, “Designing with FPGAs & CPLDs”,
CMP Books, 2002.

www.eebyte.com

